12y^2-5784y+5760=0

Simple and best practice solution for 12y^2-5784y+5760=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 12y^2-5784y+5760=0 equation:



12y^2-5784y+5760=0
a = 12; b = -5784; c = +5760;
Δ = b2-4ac
Δ = -57842-4·12·5760
Δ = 33178176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{33178176}=\sqrt{576*57601}=\sqrt{576}*\sqrt{57601}=24\sqrt{57601}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5784)-24\sqrt{57601}}{2*12}=\frac{5784-24\sqrt{57601}}{24} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5784)+24\sqrt{57601}}{2*12}=\frac{5784+24\sqrt{57601}}{24} $

See similar equations:

| 9.8+5x=10.4 | | 9*x-6=7*x+4 | | 11*x+9=8*x+15 | | 4*(x+2,5)=3*(x-2,5) | | 4*(x+2,5)=3*(x−2,5) | | 1+3y=2.5 | | -2x÷3=-5 | | 12y^2-5884y+5860=0 | | a*(-3)=4,2 | | 4=2m-7m | | x⋅(-3)=4,2 | | (x+2)/3=3 | | a⋅(-3)=4,2 | | 20+5*2=x | | 8)9n-7=5n+13 | | 2x-1=18-x | | 3÷3x=9 | | 3k^2+5k−7=0 | | 2(x+5)=3x-5 | | 4x-9=3x-5* | | x+2(x-4)=7510 | | 7x=−37 | | 2+3/4^z=2/3 | | F(x(=17 | | 1,8x+1,7+2,3=1,4+1,1x+1,5 | | x-7=(x-3/5x)-23 | | -4x+13=-21 | | x-7=(x3/5x)-23 | | 6x-2(3x+1)+3=4x-3-4(x-1) | | |8x-5|=6x+19 | | 2x+18=88−8 | | 2+(3/4)*z=2/3 |

Equations solver categories